Cluster counting in helium based gas mixtures

G. Cataldi, F. Grancagnolo, S. Spagnolo
Università di Lecce, Dipartimento di Fisica and INFN, Sezione di Lecce, via Arnesano, 73100 Lecce, Italy

Received 16 April 1996; revised form received 12 July 1996

Abstract

The statistical advantages deriving from counting primary ionization, as opposed to the conventional energy loss measurement, are extensively discussed. A primary ionization counting method is proposed for a "traditional", cylindrical, single sense wire cell drift chamber, which makes use of a helium based gas mixture. Its conceptual feasibility is proven by means of a simple Monte Carlo simulation. A counting algorithm is developed and tested on the simulation output. A definition of the parameters of the read-out and of the digitizing electronics is given, assuming the described counting algorithm applied to a general detector design, in order to have a complete and realistic planning of a cluster counting measurement. Finally, some interesting results from a beam test, performed according to the described parameters, on primary ionization measurements and on π/μ separation are shown.

1. Introduction

Particle identification in high energy physics experiments is a difficult task. It often requires dedicated detectors to improve on the reliability of the off-line tagging techniques. The tracking devices, like drift or proportional chambers, can provide a measurement of the energy loss along the particle trajectory which, together with a measurement of the momentum, allow to infer the mass of the ionizing particle. However, the large and inherent uncertainties in total energy deposition represent a serious limit to the particle separation capabilities. Primary ionization, on the other hand, thanks to its Poissonian nature, offers a more statistically significant way to infer a mass information with no other tool than the tracking detector itself, and hence without affecting the transparency of the apparatus.

Section 2, starting from a summary of the theory of energy loss, is devoted to a comparison between these two different approaches to the particle identification problem. In Section 3 the inherent technical difficulties related to cluster counting are presented along with suggestions to overcome them even in detectors like "traditional" single sense wire drift chambers without recurring to dedicated "ad hoc" geometries like the time expansion chamber [1] or special operating conditions, like very low gas pressure [2]. A conceptual experiment is hence sketched in order to illustrate the most relevant parameters in a cluster counting measurement. Section 4 describes a simple Monte Carlo simulation, implemented to study the effects of the detector geometry and to prove the conceptual feasibility of the method. A counting algorithm is then proposed. Its reliability has been verified on the simulation output and it is used to determine the optimal parameters for the cluster counting measurement in the adopted setup. Finally, results of a beam test are illustrated in Section 5: primary ionization measurements for minimum ionizing particles in He-hydrocarbon mixtures are presented, the dependence of the number of clusters on the particle momentum is shown and π/μ separation for different momenta is attempted and compared to results achievable by the "traditional" dE/dx truncated mean approach.

2. Primary ionization counting versus total energy loss measurement

2.1. A summary of energy loss mechanisms

The process of energy loss of charged particles traversing a medium, although described in terms of continuous and macroscopic variables, is essentially discrete in nature. It consists, in fact, in a sequence of isolated interactions of the ionizing particle with the atoms, or the molecules of the medium, like excitation and ionization, or elastic scattering processes (like Rutherford scattering) involving free electrons [3,4].

The effect of the passage of a charged particle in a gas is a track of ionization consisting of a sequence of clusters of one or more electrons which are all released in a single act of primary ionization. They are, generally, spatially confined thanks to a favourable ratio between the mean free path of the particle and the average range of primary electrons.

The relevant parameters for the description of this localized energy deposit are primary ionization density along the
The main advantage of the Poisson probability distribution is that its Gaussian limit is achieved as soon as the mean value of its number of very unlikely independent random events: thekinetic energy of the primary electrons can be used in the energy transfer spectrum. They agree, also with more recent calculations [11], on a broad and strongly asymmetric distribution of the energy loss is an extremely difficult function. While statistical considerations imply that the distribution of the energy loss in thick and dense materials has a Gaussian shape, because of the very large number of ionizing collisions (central limit theorem), in gaseous materials, as in drift or proportional chambers, such considerations are of little or no help.

From an analytical point of view, the probability $f(E_0, E, x)$ that an ionizing particle of initial energy E_0 has an energy E at a depth x is defined by the following equation [9]:

$$f(E_0, E, x + dx) - f(E_0, E, x) = -f(E_0, E, x) \, dx \int_0^{+\infty} dE' \Phi_{coll}(E, E')$$

$$+ dx \int_0^{+\infty} dE' \Phi_{coll}(E + E', E') f(E_0, E + E', x), \quad (2)$$

where the probability $\Phi_{coll}(E, E')$ that in a single collision the particle of energy E loses a quantum of energy E', is computed, as described above, from the cross sections of all the processes taking place in the medium. Analytical [10] and numerical [11] attempts to solve Eq. (2) have been made. The results refer to different regions in the energy transfer spectrum. They agree, also with more recent computations [7], on a broad and strongly asymmetric distribution, with a mean value clearly larger than the most probable value of dE/dx. Its FWHM ranges from 60% to 100% of the most probable value. Furthermore the distribution is almost invariant on the track length, since the number of primary collisions, releasing a large amount of energy, and so allowing for δ-ray production, becomes larger as the thickness of the traversed gas increases.

When one tries to use the total energy loss measurement for particle identification purposes, even in the most favourable momentum region (the relativistic rise) the typical separation between energy loss curves relating to different particles is smaller than the spread around the relative

track and cluster size. The number of electrons belonging to each cluster depends on the energy released in the collision.

Theoretical evaluations of cluster size distributions have been made through Monte Carlo simulations in argon [5]. The main inputs for such simulations consist in the photo-absorption cross section and in the cross sections for the various processes triggered by the collisions of low energy electrons in the gas. From the photo-absorption cross section one obtains the complex dielectric constant of the material, which describes the energy absorption and, thus provides the energy transfer spectrum [7,6]. The cross sections for the electron collisions with the gas give the probability that the kinetic energy of the primary electrons can be used in secondary ionizations. Experimental cluster size determinations in argon [8] agree with the Monte Carlo results.

Fig. 1 shows the average specific energy loss calculated according to the Bethe parameterization [3] for different particles.

2.2. Statistical considerations

Primary ionization is a typical Poissonian process. It is the final result of a large number, of the order of the Avogadro number, of very unlikely independent random events: the ionizing collisions. Their sum gives rise to the mean specific primary ionization N_0. The number of randomly distributed clusters K along a track of length l fluctuates around $K_0 = lN_0$ with a probability described by the well known relation:

$$P(K; K_0) = e^{-K_0} (K_0)^K / K!.$$ \hspace{1cm} (1)

The main advantage of the poisson probability distribution is that its Gaussian limit is achieved as soon as the mean value approaches ~ 20, which is of the order of 1 cm track length for most of the commonly used gas mixtures. Furthermore, Eq. (1) assures that the resolution of the measurement improves when the value of K_0 increases, that is, for a given gas mixture, when the track length increases. The obvious result is an inverse proportionality between the relative resolution, σ/K_0, and $l^{1/2}$.

The Poissonian behaviour of the primary ionization has suggested the commonly used method for the measurement of the mean cluster density N_{cl}: the inefficiency method. It is based on the probability of having no signal in a triggered event, for a detector with gas thickness of unitary length, that is $e^{-N_{cl}}$. The inefficiency of such a detector is, hence, directly related to the cluster density in the gas.

The power of the Poissonian behaviour of the primary ionization appears more evident when compared to the features of the Landau distribution function, which describes the fluctuations of the total energy loss. Owing to the large number of different processes, which contribute to the total energy loss of a charged particle, each one of them intrinsically and widely fluctuating, the statistical distribution of the energy loss is an extremely difficult function. While statistical considerations imply that the distribution of the energy loss in gas mixture, when the track length increases. The obvious result is an inverse proportionality between the relative resolution, σ/K_0, and $l^{1/2}$.

The Poissonian behaviour of the primary ionization has suggested the commonly used method for the measurement of the mean cluster density N_{cl}: the inefficiency method. It is based on the probability of having no signal in a triggered event, for a detector with gas thickness of unitary length, that is $e^{-N_{cl}}$. The inefficiency of such a detector is, hence, directly related to the cluster density in the gas.

The power of the Poissonian behaviour of the primary ionization appears more evident when compared to the features of the Landau distribution function, which describes the fluctuations of the total energy loss. Owing to the large number of different processes, which contribute to the total energy loss of a charged particle, each one of them intrinsically and widely fluctuating, the statistical distribution of the energy loss is an extremely difficult function. While statistical considerations imply that the distribution of the energy loss in thick and dense materials has a Gaussian shape, because of the very large number of ionizing collisions (central limit theorem), in gaseous materials, as in drift or proportional chambers, such considerations are of little or no help.

From an analytical point of view, the probability $f(E_0, E, x)$ that an ionizing particle of initial energy E_0 has an energy E at a depth x is defined by the following equation [9]:

$$f(E_0, E, x + dx) - f(E_0, E, x) = -f(E_0, E, x) \, dx \int_0^{+\infty} dE' \Phi_{coll}(E, E')$$

$$+ dx \int_0^{+\infty} dE' \Phi_{coll}(E + E', E') f(E_0, E + E', x), \quad (2)$$

where the probability $\Phi_{coll}(E, E')$ that in a single collision the particle of energy E loses a quantum of energy E', is computed, as described above, from the cross sections of all the processes taking place in the medium. Analytical [10] and numerical [11] attempts to solve Eq. (2) have been made. The results refer to different regions in the energy transfer spectrum. They agree, also with more recent computations [7], on a broad and strongly asymmetric distribution, with a mean value clearly larger than the most probable value of dE/dx. Its FWHM ranges from 60% to 100% of the most probable value. Furthermore the distribution is almost invariant on the track length, since the number of primary collisions, releasing a large amount of energy, and so allowing for δ-ray production, becomes larger as the thickness of the traversed gas increases.

When one tries to use the total energy loss measurement for particle identification purposes, even in the most favourable momentum region (the relativistic rise) the typical separation between energy loss curves relating to different particles is smaller than the spread around the relative
mean values. A satisfactory signal separation requires mass resolutions well below the inherent limit of the total energy loss.

From the above considerations it follows that there is an enormous statistical advantage in counting the primary ionization as opposed to the measurement of the total ionization. Early experimental attempts are described in Refs. [1,12-15]. Nevertheless the technical difficulties related to cluster counting have favoured \(\frac{dE}{dx} \) as a way to recognize particles of different nature, driving, as a consequence, the development of several methods to improve the achievable resolution.

These methods rely on a fine sampling of the ionization along the particle trajectory. Since the momentum loss, when traversing a gaseous material, is negligible and does not give rise to a relevant change in specific energy loss, all the measurements performed along the track can be treated as coming from a single energy loss distribution. A fit to the expected spectrum provides the best estimate of the most probable value of energy loss. The method of the truncated mean allows to overcome the problems arising from the accurate evaluation of the theoretical distribution and from the need of a very large sample size. It works as a selective mean rejecting a certain percentage of the highest values of \(\frac{dE}{dx} \) in the collected sample. In this way the interactions involving large energy transfers, which are poor of information about the particle velocity, do not contribute to the final measurement. The obtained mean represents the most probable value of the total ionization and the suppression of high energy transfers results in an overwhelming gain in resolution. However, a number of sampling exceeding 100 over a track length of the order of 2–3 m is needed to achieve reliable particle separations. Experimental \(\frac{dE}{dx} \) resolutions in the range 2.5–15% have been achieved with different average track lengths (from \(\sim 0.5 \) to \(\sim 5 \) m) and number of samplings along the track (from 20 to 300), as reported in Ref. [16].

3. The cluster counting technique

3.1. Conceptual counting technique

The method of primary ionization measurement consists in singling out, in every recorded detector signal, the isolated structures related to the arrival on the anode wire of the electrons belonging to a single ionization act. In order to achieve this goal, special experimental conditions must be met: pulses from electrons belonging to different clusters must have a little chance of overlapping in time and, at the same time, the time distance between pulses generated by electrons coming from the same cluster must be small enough to prevent overcounting. The fulfillment of both these requirements involves incompatible time resolutions: it appears that the optimal counting condition can be reached only as a result of the equilibrium between the fluctuations of those processes which forbid a full cluster detection efficiency and of the ones enhancing the time separation among different ionization events.

Assuming that the experimental setup allows for a very favorable ratio of signal to noise in detecting the single electrons, the limit to a full counting efficiency comes from two orders of motivations. The first lies on the specific technology applied for the measurement, that is: the dead time of front-end and of the preprocessing electronic chain, the signal sampling rate, the resolution of the counting algorithm. The above items, which are of critical importance in planning a cluster counting measurement, will be extensively discussed later on. The second motivation is represented by the physical processes which inherently worsen the detector response. The most relevant ones are the electron attachment and the maximum rate at which the detector can operate.

Electron attachment is a real problem for ionization detection: very small fractions of electro-negative pollutant decrease the number of detected electrons considerably. Moreover the attachment probability strongly depends on the electron energy distribution, which has, in a gas, a more complex shape than the usual maxwellian distribution and is very sensitive to gas composition. It follows that an extremely high control of the pollutant level in the gas must be kept during operation.

The maximum rate that a detector can stand without losses of efficiency is related to the time it takes for the gas and the cathodic walls to re-absorb the positive charges produced in the avalanche process. The electron and positive ion avalanches develop in a well limited region. Electrons quickly recombine on the anode surface and the positive cloud disperses through the slow ion drift toward the cathode. Owing to the small ion mobility (\(\mu_+ \sim 10^{-3} \) electron), the positive charge distribution can locally reduce the electric field, with the result of a gain loss on the collecting wire. A region dense in positive ions around the wire can produce the recombination of a fraction of the electrons from a different avalanche or can capture primary electrons before they reach the amplification region. The spatial spread of the positive ion distribution is small enough to account for local inefficiency only. Therefore this effect is not a relevant problem as long as gas detectors are used as tracking devices. On the other hand, it must be taken into account in a cluster counting measurement where electrons to be detected are closely spaced in distance and time.

The physical process which naturally leads to a primary ionization overestimate is electron diffusion in the gas. Multiple collisions of electrons, coming from a single cluster, on atoms or molecules, in the gas produce a Gaussian spread of the arrival time of the electrons on the collecting anode. The relevant parameters for a cluster counting measurement are time resolution \(\tau \) and electron diffusion \(\sigma_D \). The ideal conditions, which guarantee a real Poissonian distribution of the counting, are given by a time resolution \(\tau = 0 \) in absence of diffusion. In this way the electrons belonging to the same cluster will reach the anode all at the same time,
giving rise to a single structureless signal, whose amplitude is related to the cluster size. The electron arrival times are fixed by the geometrical configuration of the event and by the drift velocity, or, equivalently, by the electric field. A time resolution \(\tau \neq 0 \) forbids to resolve and count those electron signals which are closer in time than \(\tau \). A lack of diffusion and a finite resolving time result in a systematic inefficiency in primary ionization counting. On the other hand a \(\sigma_D \neq 0 \) determines a spreading of the arrival time for electrons of the same cluster. Therefore, for \(\tau = 0 \) and \(\sigma_D \neq 0 \), the number of counted signals is equal the total ionization number in the gas, which is related to the whole energy deposit and so fluctuates according to a Landau-like distribution.

A quality parameter, which allows to discriminate a primary ionization counting from a total energy loss measurement, can be defined as the ratio between the dispersion of the counting around the mean and the square root of the mean: \(\xi = \sigma / \sqrt{\langle N \rangle} \). In an ideal counting, the poisson statistics guarantees \(\xi = 1 \). For a fixed gas mixture and electrostatic configuration, that is for a given value of \(\sigma_D \), we expect that the electron counting distributions show a large value of \(\xi \) for \(\tau = 0 \), according to the Landau statistics, which decreases for increasing \(\tau \). We can conclude that, when the combined effects of diffusion and finite resolution lead to the condition \(\xi = 1 \), the diffusion exactly compensates the loss of counting due to the finite resolving time, making the electron counting a real primary ionization measurement.

3.2. The advantages of helium

We propose a technique to measure the primary ionization by counting the pulses, related to the arrival of all electrons from a cluster on the anode wire, within the whole signal recorded in a drift cell. This counting requires a good time resolution, to be determined by the compensation mechanism with electron diffusion, and a low pulse density in the time gate available for signal acquisition, to prevent possible overlaps. The choice of a suitable gas mixture can improve the technical feasibility of the measurement. Helium based gas mixtures, thanks to an increasing popularity in high precision physics because of its long radiation length [18], show many interesting features in connection with cluster counting.

First of all the high ionization potential of helium, 24.5 eV, compared to argon, 15.7 eV, causes a smaller primary and total ionization density (in Ref. [19] 4.8 clusters/cm and 8 electrons/cm are quoted, respectively) and, therefore, a spatial gap between consecutive clusters which is about six times larger than the corresponding one in argon.

On the other hand a small cluster density entails a greater relative sensitivity, for a given resolving time, to variations in cluster deposition. This point is of critical importance in a particle identification measurement, where the information about the particle momentum, provided by a spectrometer, must be matched with the theoretical expectation for the specific ionization for different masses, in order to assign the right flavour to the particle with a good confidence level.

Furthermore electron drift velocity in helium is smaller compared to conventional argon mixtures for every value of the reduced electric field \(E/p \), whereas saturation occurs in argon yet at 300 V/cm. A low drift velocity amplifies cluster separation in the time domain, which is of interest for our purposes. A higher ion mobility, entailing a fast clear up of the space charge region, makes helium more attractive than argon in cases where higher gains are required for better spatial resolutions.

Finally the diffusion coefficient in pure helium is greater than in argon, nevertheless, a small amount of quencher in the gas reduces the diffusion to a level which is comparable with diffusion in the corresponding argon mixtures [19].

3.3. Technical aspects of the measurement

We want now to evaluate the requirements on the electronics and on the acquisition system necessary for a cluster counting measurement. We establish, therefore, the main features of our ideal detector, in order to derive the fundamental parameters of the measurement setup: the bandwidth of the preamplifier, the sampling rate of the signal and the dynamic range of the ADC for each sampled channel.

We assume that the measurement is done in a "traditional" drift chamber with a single sense wire cell in a closed configuration (the number of field wires per sense wire is irrelevant at this point). The drift cell is square with a side of 2.6 cm and the chamber is filled with a helium based mixture having a primary ionization density of 10 clusters/cm (small percentages of quencher strongly increase the primary yields), an average drift velocity of 1 cm/\(\mu s \), a single electron longitudinal diffusion coefficient of 170 \(\mu m \), over the cell volume, and a gas gain of the order of \(10^5 \) (which guarantees a fully efficient detection of single electron pulses).

The drift path differences between two consecutive clusters generated by a track with an impact parameter \(b \neq 0 \) with respect to the sense wire can be as low as few tens of \(\mu m \) which, at the assumed drift velocity, translate in time separations of a few ns. These typical times require sensitivities of the preamplifier to frequency ranges extending up to at least a few hundred MHz.

According to Nyquest theorem a further factor of two on the sampling rate prevents frequency losses due to the digitization procedure.
The ADC of each channel of the device which samples and records the signal must have a dynamic range large enough to fulfill all physical constraints. Typical cluster population distributions [51] suggest that one must be able to count at least up to 16 electrons within a cluster, which entails 4 bits. One needs two more bits to distinguish the relevant signal from noise fluctuations with a signal to noise ratio of 4 to 1 and one more bit to take into account the large inherent fluctuations of the avalanche process. We require therefore, for redundancy, a minimum of 8 bits for the ADC of each sampled channel.

Finally our device must record signals over a time window corresponding to the longest drift path for an electron in the cell.

In summary, in order not to limit experimentally the capabilities of the cluster counting technique, our hypothetical set up will possess the following characteristics:

(i) preamplifier highband limit of the order of 1 GHz;
(ii) sampling frequency of the order of 2 Gsamples/s;
(iii) ADC sensitivity of at least 8 bits;
(iv) memory depth for a single event of about 4 Kbytes.

3.4. Further requests for cluster counting

A realistic planning of a cluster counting measurement requires two additional inputs: 1) a determination of the time resolution, \(\tau_{\text{opt}} \), which compensates the extra counting produced by the spreading of the arrival times of the electrons belonging to the same cluster due to diffusion; 2) an estimate of the sampling rate, \(R_{\text{opt}} \), needed to count with high efficiency the cluster pulses in the whole signal. \(\tau_{\text{opt}} \) depends on \(b \), the impact parameter of the track with respect to the sense wire. It must be averaged over all geometrical configurations.

The evaluation of \(R_{\text{opt}} \) requires the knowledge of the effective cluster counting algorithm applied in the off-line signal processing. Any algorithm will need a minimum number of bins \(N_{\text{min}} \) to recognize the shape of the pulse due to a cluster, according to a given cluster definition. The optimal sampling rate is expressed by the relation:

\[
R_{\text{opt}} = \frac{N_{\text{min}}}{\tau_{\text{opt}}}. \tag{3}
\]

A convenient way to obtain a reliable determination of \(\tau_{\text{opt}} \) and \(R_{\text{opt}} \) is the development of a specific cluster finding algorithm to be applied and tested on a Monte Carlo simulation of the detector, which takes into account all the relevant physical processes.

4. Monte Carlo simulation

4.1. Input parameters

The analyzed drift volume is represented, in cross section, by a 2.6 cm side square cell. The sense wire, 25 \(\mu \)m diameter, is set at 1800 V with respect to the cathodic walls.
velocity, \(\nu_{\text{drift}} \), and of the longitudinal diffusion, \(\sigma_D \), as a function of the electric field, are obtained from a fit to experimental [21] and Monte Carlo [19] determinations for the gas mixtures 90\%He 10\%C\(_4\)H\(_{10}\), 95\%He 5\%C\(_4\)H\(_{10}\) and 80\%He 20\%C\(_4\)H\(_{10}\). In order to follow the electron path and to accurately compute the arrival time on the sense wire, the local field \(E \) is computed over a fine grid 50 \(\times \) 50 \(\mu \)m\(^2\).

At this phase of the simulation one is able to study the physical processes which affect a general primary ionization counting procedure, with a glance also at the relevant effects originated from the detector geometry (Section 4.2). The next step consists in building, from the electron arrival time sequence, a digitized signal which can be processed by a cluster counting algorithm (Section 4.3).

g) Amplification region. The number of electrons in the avalanche and the total amplitude of the signal on the wire are extracted from a Polya distribution [22].

f) Pulse trails. For each electron, the simulated arrival pulse is assumed to have a Gaussian shape, of standard deviation \(\sigma_r \), on the rising front and a double exponential, of time constants \(\tau_{\text{r}} \) and \(\tau_{\text{f}} \), in the falling edge. The rise \((\tau_{\text{r}} = 2\sigma_r = 3.4 \text{ ns}) \) and the fall times \((\tau_{\text{f}} = 3 \text{ ns and } \tau_{\text{f}} = 60 \text{ ns}) \) are chosen to emulate the typical shape of the isolated pulses observed in real signals which have been acquired in the analogous experimental condition described in Section 5. The pulse trails are generated by adding together the pulses relative to the arrival of each single electron on top of an electronic random noise. The electronics noise amplitude is extracted, according to a Gaussian distribution with mean and standard deviation typical of real signals, relative to the same experimental setup.

g) Digitization. The digitization procedure simulates a sampling rate of 2 Gsamples/s and a dynamic range of 8 bits per channel.

The simulated signal is compared in Fig. 2 to a real signal. It is evident that the signal to noise ratio allows for a highly efficient detection of single electron pulses.

4.2. Resolving time and longitudinal diffusion effects

In order to analyze effects due to the particular geometry, we compare the numbers of counted and generated clusters along a track as a function of its impact parameter (Fig. 3). For small impact parameters \((0.1 \text{ cm} \leq b \leq 0.6 \text{ cm}) \), the counting efficiency decreases with \(b \) because of the decreasing differences between the electron path trajectories along the drift direction. For impact parameters in the range \(0.6 \text{ cm} \leq b \leq 1.2 \text{ cm} \), the efficiency increases because of the slower drift velocity in the regions far away from the anode. Moreover, the spreading of the arrival times, due to diffusion, increases with the drift length and hence, with the impact parameter.

In order to save the generality of our discussion, in the following we will refer to a set of events where the impact parameter has been randomly extracted from a uniform distribution in the range \(0 \text{ cm} \leq b \leq 1.3 \text{ cm} \).
Let us first consider the case of no diffusion. In this condition the number of clusters arriving at the sense wire is not affected by the cluster size. In Fig. 4a the number of counted clusters per unit length is plotted versus the number of generated primary clusters per unit length. Each curve corresponds to a different resolving time τ, in the range $0 \text{ ns} \leq \tau \leq 8 \text{ ns}$. The effect of the resolving time is such that only the electrons arriving at the wire with relative delays greater than τ are counted.

We introduce now the effect of the diffusion. Fig. 4b is the analogous of Fig. 4a for a σ_D value, proper of the 90%He 10%iC$_4$H$_{10}$ mixture. One notices that, for the set of resolving times considered previously, the diffusion blows up the clusters in a way that the number of counted clusters exceeds now the number of generated clusters for small resolving times. Fig. 5 proves that the geometry of our detector, the gas choice and the electronics specifications allow to establish a correspondence between an actual primary ionization measurement and the Poissonian behaviour of the counting.

Fig. 6 shows that, for any given cluster density, there is an optimal value of the time resolution τ_{opt}, which reduces the number of counted pulses to the number of total clusters. For $N_{\text{cl}} = 12/\text{cm}$, which is a reasonable value for a 90%He 10%iC$_4$H$_{10}$ mixture. The required time resolution is $\tau_{\text{opt}} = 4.0 \text{ ns}$.

We stress that this result is related to the detector geometry: it depends on the impact parameter and on the size of the drift cell.

4.3. The counting algorithm

The full digitized event is stored in the array $Y(i)$ where i corresponds to the time T elapsed since the trigger occurrence: $i = T f_s$, f_s being the digitizer sampling frequency. A single pulse is characterized by its rise time T_r, fall time T_f, and amplitude.

The search for cluster pulses is performed by scanning the array $Y(i)$, suitably filtered to remove random electronics noise, which may generate fake signals, and long tails, which cause pile-up. The local maxima of $Y(i)$ are identified as cluster pulses according to: a) threshold criteria on the amplitude of $Y(i)$ and on its derivative, b) consistency criteria on the rise and the fall times T_r and T_f of the maxima of $Y(i)$, c) isolation criteria between the maxima and their adjacent minima. All the values for the described criteria are defined by the analysis of a fiducial region of $Y(i)$.

The search algorithm has been applied to Monte Carlo generated signals. Fig. 7 shows, for different cluster densities, the difference between the number of clusters, counted with the described algorithm, and the number of generated clusters versus the impact parameter for a particular gas. This behaviour is a consequence, as mentioned in the previous section, of the actual dependence of the optimal time resolution, τ_{opt}, on the peculiar average diffusion of any given track whose impact parameter was randomly generated.

In order to assert the reliability of the algorithm we have looked at the differences between the electron arrival times as generated in the Monte Carlo and the times at which
Fig. 8. Distribution of the residues between the arrival time generated in the Monte Carlo and the time at which the search algorithm identifies a peak (Fig. 8). The mean value of such a distribution is 7.5 bins, which corresponds to 3.75 ns (to be compared with the rise time of the pulse shape generated, $T_r = 3.4$ ns). Its standard deviation ($\sigma = 0.4$ ns) is compatible with the digitizer resolution.

An estimate of the effective resolving time of the algorithm can be obtained by comparing the results given by the algorithm and the number of pulses counted when a resolving time τ is simulated as described in Section 4.2. Fig. 9 shows that the time resolution of the search technique is in the range 2-3 ns for cluster density varying from 5/cm to 28/cm. A different way to study the algorithm performance is illustrated by Fig. 10, where the counting efficiency for all the electron pulses in a signal is plotted as a function of the time separation between a pulse and the previous one. The algorithm is not sensitive to signals separated by less than 4 bins = 2 ns. However, for time separation greater than 7 bins = 3.5 ns the efficiency is greater than 70% and it reaches the full efficiency for separations larger than 10 bins (5 ns).

For $N_d = 12$ cm, the resolution of the algorithm is $\tau \sim 2.5$ ns (Fig. 9). Taking into account the simulated 2 Gsamples/s sampling rate, this time corresponds to a minimum number of bins, necessary to identify the clusters, $N_{min} = 5$.

Fig. 9. Difference between the number of clusters which can be detected when a given dead time is simulated and the number of clusters counted by the algorithm for different primary ionization densities. The algorithm resolution is assumed to be equal to the simulated dead time which minimizes the difference between the two countings.

Fig. 10. The algorithm efficiency for resolving cluster pulses versus the distance (in bins) of each pulse from the previous one.

Fig. 11. Clusters density, δ_δ, as a function of the angle α between the track and the normal to the tube for a 25 μm wire diameter. The gas mixture used is 95% He 5% C$_2$H$_6$, the high voltage on the sense wire is 1550 V and the beam momentum is 200 MeV/c.
Fig. 12. Distribution of the number of clusters after an iterative application of the correction factor. The pion beam has a momentum of 280 MeV/c. Two different mixtures are shown: (a) 80% He 20% CH4 and (b) 95% He 5% i-C4H10.

We conclude that, in the described detector (2.6 x 2.6 cm² square drift cell), the optimal sampling rate for a gas mixture with 12 primary ionizations/cm, average drift velocity equal to 1 cm/µs and single electron longitudinal diffusion in one centimeter of 170 µm is (see Section 4.2):

\[R_{\text{opt}} = N_{\text{min}} / \tau_{\text{opt}} = \frac{5}{4.0} \simeq 1.25 \text{ Gsamples/s}. \]

5. Results from a test beam

In order to test in a real experiment the result of the Monte Carlo study previously described, measurements of primary ionization in some mixture of helium-isobutane and helium-methane have been performed [23] with beams of pions and muons at the P.S.I. of Villigen (Zurich, Switzerland) in the 200-300 MeV/c range impinging on a square drift tube, 2.6 cm side, made of 0.4 mm thick aluminum. MWPC upstream and downstream of the drift tube were used for trigger purposes and to define the beam particle trajectories. Scintillation counters were placed along the beam line for time-of-flight measurement aimed at an efficient separation of pions from muons. The drift tube was instrumented with a setup very close to the one described at the end of Section 3.3: fast risetime (160 ps), wide band (100 kHz to 1.7 GHz) preamplifier, digital oscilloscope (1.1 GHz bandwidth, 8 bits ADC per channel and 2 Gsamples/s sampling rate). Details on the experimental setup can be found in Refs. [23,24]. The data have been collected in a not dedicated beam test, therefore the available set of measurements, far from being complete, is just intended to represent an evidence of the feasibility of a primary cluster counting measurement in a conventional drift detector filled with a helium based gas mixture.

The space charge effect, discussed in Section 3.1, has been observed in a 95%He 5%iC4H10 mixture as a function of the angle \(\alpha \) between the beam and the direction perpendicular to the sense wire. A rough estimate of the typical dimension of the space charge region, about 500 µm, can be inferred from Fig. 11. Even though the effect is relevant only for angles smaller than 30°, we report about the analysis of data collected with angles of 45°.

The rejection power for pion-muon separation has been evaluated for two different beam momenta. In order to obtain a realistic estimate of the results achievable in a large scale experiment, different sets of measurements corresponding to different track lengths have been simulated by adding up events extracted according to the cluster (or dE/dx) distributions in a single cell for the two particle types. The under-
Table I

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Beam</th>
<th>(N_{cl}) (before)</th>
<th>(\xi) (before)</th>
<th>(N_{cl}) (after)</th>
<th>(\xi) (after)</th>
<th>Pee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% He 20% CH(_4)</td>
<td>280</td>
<td>34.4 ± 6.9</td>
<td>1.18 ± 0.06</td>
<td>33.7 ± 5.6</td>
<td>0.96 ± 0.05</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>34.2 ± 6.8</td>
<td>1.16 ± 0.07</td>
<td>33.0 ± 5.7</td>
<td>0.99 ± 0.06</td>
<td>4.4</td>
</tr>
<tr>
<td>95% He 5% iC(_4)H(_10)</td>
<td>200</td>
<td>38.9 ± 9.4</td>
<td>1.51 ± 0.06</td>
<td>37.8 ± 6.4</td>
<td>1.04 ± 0.06</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>38.8 ± 9.3</td>
<td>1.49 ± 0.03</td>
<td>36.8 ± 6.1</td>
<td>1.02 ± 0.02</td>
<td>5.0</td>
</tr>
<tr>
<td>90% He 10% iC(_4)H(_10)</td>
<td>150</td>
<td>70.8 ± 10.0</td>
<td>1.19 ± 0.07</td>
<td>62.3 ± 8.0</td>
<td>1.01 ± 0.05</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>49.6 ± 9.4</td>
<td>1.33 ± 0.08</td>
<td>46.8 ± 6.9</td>
<td>1.01 ± 0.06</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>46.8 ± 8.5</td>
<td>1.39 ± 0.08</td>
<td>45.7 ± 7.0</td>
<td>1.04 ± 0.06</td>
<td>4.8</td>
</tr>
<tr>
<td>85% He 15% iC(_4)H(_10)</td>
<td>250</td>
<td>57.6 ± 8.2</td>
<td>1.08 ± 0.05</td>
<td>56.6 ± 7.4</td>
<td>0.98 ± 0.04</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Fig. 13. Cluster distributions from single cell measurements ((a) pions, (b) muons) and for 100 cells sampling a track ((c) pions, (d) muons). Data refer to 200 MeV/c beam momentum and 95% He 5% iC\(_4\)H\(_10\) gas mixture.

lying assumption is that changes and correlations in specific energy loss along the whole path of the particles can be neglected. The set of data used refers to the 95% He 5% iC\(_4\)H\(_10\) gas mixture and to beam momenta of 200 and 280 MeV/c. The cluster distributions for single cell and 100 times sampled tracks are shown in Fig. 13, while the resolution as a function of the sampling is reported in Fig. 14. Fig. 15 shows the best \(\pi/\mu\) discrimination achievable by an ideal cluster counting measurement. This has been evaluated by extracting the single cell measurements not from the experimental cluster distribution but from a Gaussian fit to it.

The available data sample unfortunately allows us to study the \(\pi/\mu\) separation only for two values of the particle momenta: 200 and 280 MeV/c. The overall results for 100 times sampled tracks, sample length 3.7 cm, corresponding to the 2.6 cm drift tube crossed at 45\(^\circ\), in 95% He 5% iC\(_4\)H\(_10\) are plotted in Fig. 16 together with theoretical evaluations of the dE/ dx resolution with the usual parameterization [25]:

\[
\sigma(\%) = 40.7 n^{-0.43} l^{-0.32}, \tag{5}
\]

where \(n\) is the total number of samples and \(l\) is the sampling length.

5.2. Primary ionization measurement

The total ionization, produced in a gas mixture, is correlated to the specific energy loss by the average energy \(w\) required for the production of one electron–ion pair. Neglecting nonlinear effects, it is possible to consider the total ionization as given by:

\[
\left(\frac{dN}{dx} \right)_{ws} = \frac{P_1}{w_1} \left(\frac{dE}{dx} \right)_1 + \frac{P_2}{w_2} \left(\frac{dE}{dx} \right)_2. \tag{6}
\]
where \(p_1 \) and \(p_2 \) are the helium and the hydrocarbon percentages. Analogously, assuming that \(\langle N_e \rangle \) is the mean electron population in each cluster, we can write for the primary ionization:

\[
\left(\frac{dN}{dx} \right)_p = \frac{1}{\langle N_e \rangle_1} p_1 \left(\frac{dE}{dx} \right)_1 + \frac{1}{\langle N_e \rangle_2} p_2 \left(\frac{dE}{dx} \right)_2.
\]

(7)

The \(dE/\text{dx} \) curves, inferred by the Bethe–Bloch parameterization, are superimposed in Fig. 17 to the experimental data. The agreement is reasonably good, given the errors. It is possible to determine the cluster density more accurately by taking into account the distribution of clusters for the long tracks as defined in the previous paragraph, for 200 MeV/c and 280 MeV/c momentum pions in 95%He 5%C\textsubscript{4}H\textsubscript{8} gas mixture:

\[
\delta_{\text{C},200} = 10.10 \pm 0.50 \text{ clusters/cm}, \quad (8)
\]

\[
\delta_{\text{C},280} = 9.65 \pm 0.47 \text{ clusters/cm}. \quad (9)
\]

Expressing equation (7) as

\[
\frac{dN}{dx} = \delta_3 = K_1 p_1 \left(\frac{dE}{dx} \right)_1 + K_2 p_2 \left(\frac{dE}{dx} \right)_2,
\]

(10)

we can fit the best values of the constants \(K_1 \) and \(K_2 \) obtaining, for minimum ionizing pions:

\[
\delta_{\text{C},200} = 5.5 \pm 0.9 \text{ clusters/cm}, \quad (11)
\]

\[
\delta_{\text{C},280} = 70 \pm 12 \text{ clusters/cm}. \quad (12)
\]

These values are consistent with Ref. [19] and a good agreement is found for isobutane with a previous experimental determinations [26] of the primary ionization obtained by the inefficiency method2. The lack of statistics forbids to apply the same method in order to measure the primary ionization in methane. However, by using the result in Eq. (11) for helium and by applying a suitable scaling for the particle momentum of the measured cluster density at 280 MeV/c in the 80%He 20%C\textsubscript{4}H\textsubscript{8} mixture (Table 1), one can derive for minimum ionizing pions:

\[
\delta_{\text{C},280} = 18 \pm 6 \text{ clusters/cm}. \quad (13)
\]

This value, compared to existing determinations, seems to suffer of the same slight underestimate affecting our deter-

2 The same authors report a \(-20\%\) higher value for \(\delta_{\text{C},280} \) when obtained with a cluster counting method.
mination of δ_{c,d,H_0} (Eq. (12)) to which it is, however, strongly correlated.

6. Conclusions

The reasons which make cluster counting a very promising technique for particle identification purposes have been discussed with a special care to its advantages with respect to the usual dE/dx measurement.

The compensation mechanism, between detector dead time and longitudinal diffusion, has been shown to guarantee the conceptual feasibility of the measurement, by means of a Monte Carlo study. The technical aspects of cluster counting have also been investigated and the enormous advantages coming from a helium based mixture are exploited to give a realistic estimate of the necessary performances of the electronics and the digitizing system in a conventional drift cell.

Summarizing, in a square drift cell of 2.6 cm side, as described in Section 3, filled with a gas with 12 primary ionizations/cm per m.i.p., drift velocity of 1 cm/μs and single electron longitudinal diffusion of the order of 170 μm in 1 cm drift path, efficient cluster counting requires a bandwidth of the preamplifier of the order of 500 MHz, a sampling rate of 1.25 Gsamples/s and an ADC dynamic range of 8 bits.

An algorithm for the search of clusters has been developed and shown to represent a reliable tool for the off-line cluster counting analysis.

Finally, a few experimental results, confirming the strength of this approach to particle identification have been presented.

The feasibility of the cluster counting technique is, then, proven from both the experimental and the analysis point of view.

Acknowledgements

We thank the KLOE collaboration which encouraged us to proceed towards a feasibility study of the cluster counting method.

References